1d_cylinder

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > 1D >

1d_cylinder

Previous pageReturn to chapter overviewNext page

{ 1D_CYLINDER.PDE

 

 This problem tests the implementation of 1D cylindrical coordinates in FlexPDE.

 A distributed source is applied to a heatflow equation.  The source is chosen as

 the analytic derivative of an assumed Gaussian solution.  The numerical solution

 is then compared to the analytical solution.

 

}

title '1D Cylinder Test -- Gaussian'

 

coordinates

   cylinder1   { default coordinate name is 'R' }

 

variables

   u

 

definitions

   k = 1

   w=0.1

  { assume a gaussian solution }

   u0 = exp(-r^2/w^2)

  { apply the correct analytic source for cylindrical geometry (we could use

     div(k*grad(u0)) here, but that would not test the 1D Cylinder expansions) }

   s = -(4/w^2)*(r^2/w^2-1)*u0

 

   left=point(0)

   right=point(1/10)

 

equations

   U: div(K*grad(u)) +s = 0

 

boundaries

  region 1

      start   left   point value(u)=u0

      line to right point load(u)=(-2*k*r*u0/w^2)

 

monitors

  elevation(u) from left to right

 

plots

  elevation(u,u0) from left to right

  elevation(u-u0) from left to right as "Error"

  elevation(-div(grad(u)),s) from (0.01) to right

  elevation(-grad(u),-grad(u0)) from (0.01) to right

 

end