geoflow

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Fluids >

geoflow

Previous pageReturn to chapter overviewNext page

{ GEOFLOW.PDE

 In its simplest form, the nonlinear steady-state quasi-geostrophic equation

 is the coupled set:

             q  = eps*del2(psi) + y                    (1)

       J(psi,q) = F(x,y) - k*del2(psi)                 (2)

 where psi     is the stream function

       q       is the absolute vorticity

       F       is a specified forcing function

       eps and k are specified parameters

       J       is the Jacobian operator:

               J(a,b) = dx(a)*dy(b) - dy(a)*dx(b)

 The single boundary condition is the one on psi stating that the closed

 boundary C of the 2D area should be streamline:

       psi = 0 on C.

 In this test, the term k*del2(psi) in (2) has been replaced by (k/eps)*(q-y),

 and a smoothing diffusion term damp*del2(q) has been added.

 Only the natural boundary condition is needed for Q.

}

 

title 'Quasi-Geostrophic Equation, square, eps=0.005'

 

variables

   psi

   q

 

definitions

   kappa = .05

   epsilon = 0.005

   koe = kappa/epsilon

   size = 1.0

   f = -sin(pi*x)*sin(pi*y)

   damp =  1.e-3*koe

 

initial values

   psi = 0.

   q   = y

 

equations

   psi: epsilon*del2(psi) - q = -y

   q:   dx(psi)*dy(q) - dy(psi)*dx(q) + koe*q - damp*del2(q) = koe*y + f

 

boundaries

  region 1

      start(0,0) value(psi)=0 natural(q)=0

      line to (1,0) to (1,1) to (0,1) to close

 

monitors

  contour(psi)

  contour(q)

 

plots

  contour(psi) as "Potential"

  contour(q)   as "Vorticity"

  surface(psi) as "Potential"

  surface(q)   as "Vorticity"

  vector(-dy(psi),dx(psi)) as "Flow"

end