3d_sphere

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Usage > 3D_domains >

3d_sphere

Previous pageReturn to chapter overviewNext page

{ 3D_SPHERE.PDE

 

 This problem considers the construction of a spherical domain in 3D.

 The heat equation is  Div(-K*grad(U)) = h, wth U the temperature and

 h the volume heat source.

 A sphere with uniform heat source h will generate a total amount of heat

   H = (4/3)*Pi*R^3*h, from which  h = 3*H/(4*Pi*R^3).

 The normal flux at the surface will be Fnormal = -K*grad(U) <dot> Normal,

 where Normal is the surface-normal unit vector.  On the sphere, the unit

 normal is [x/R,y/R,z/R].

 At the surface, the flux will be uniform, so the surface integral of flux is

   TOTAL = 4*pi*R^2*normal(-K*grad(U)) = H

 or  normal(-K*grad(u)) = H/(4*pi*R^2)  =  R*h/3.

 

 In the following, we set R=1 and H = 1, from which

   h = 3/(4*pi)

   normal(-k*grad(u)) = 1/(4*pi)

}

 

title '3D Sphere'

 

coordinates

   cartesian3

 

variables

   u

 

definitions

   K = 0.1   { conductivity }

   R0 = 1   { radius }

   H0 = 1   { total heat }

  { volume heat source }

   heat =3*H0/(4*pi*R0^3)                  

 

equations

   U: div(K*grad(u)) + heat   = 0

 

 

extrusion

  surface z = -SPHERE ((0,0,0),R0)       { the bottom hemisphere }

  surface z = SPHERE ((0,0,0),R0)       { the top hemisphere }

 

boundaries

  surface 1 value(u) = 0     { fixed value on sphere surfaces }

  surface 2 value(u) = 0

  Region 1

      start(R0,0)

      arc(center=0,0) angle=360

 

plots

  grid(x,y,z)

  grid(x,z) on y=0

  contour(u) on x=0

  contour(4*pi*magnitude(k*grad(u))) on x=0

  contour(4*pi*magnitude(k*grad(u))) on y=0

  contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on x=0 as "normal flux"

  contour(-4*pi*k*(x*dx(u)+y*dy(u)+z*dz(u))/sqrt(x^2+y^2+z^2)) on y=0 as "normal flux"

  vector(-grad(u)) on x=0

  vector(-grad(u)) on y=0

 

  contour(4*pi*normal(-k*grad(u))) on surface 1 as "4*pi*Normal Flux=1" { bottom surface }

  contour(4*pi*normal(-k*grad(u))) on surface 2 as "4*pi*Normal Flux=1" { top surface }

  surface(4*pi*normal(-k*grad(u))) on surface 1 as "4*pi*Normal Flux=1" { bottom surface }

  surface(4*pi*normal(-k*grad(u))) on surface 2 as "4*pi*Normal Flux=1" { top surface }

 

  summary

    report(sintegral(normal(-k*grad(u)),1)) as "Bottom current :: 0.5 "

    report(sintegral(normal(-k*grad(u)),2)) as "Top current :: 0.5 "

    report(vintegral(heat)) as "Total heat :: 1"

    report(sintegral(normal(-k*grad(u)))) as "Total Flux :: 1"

 

end