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SIMPLE PDE MODEL OF SPOT REPLICATION IN ANY
DIMENSION∗

CHIUN-CHUAN CHEN† AND THEODORE KOLOKOLNIKOV‡

Abstract. We propose a simple PDE model which exhibits self-replication of spot solutions in
any dimension. This model is analyzed in one and higher dimensions. In the radially symmetric
case, we rigorously demonstrate that a weakened version of the conditions proposed by Nishiura
and Ueyama for self-replication are satisfied. In dimension three, two different types of replication
mechanisms are analyzed. The first type is due to radially symmetric instability, whereby a spot
bifurcates into a ring. The second type is nonradial instability, which causes a spot to deform into a
peanut-like shape and eventually split into two spots. Both types of replication are observed in our
model, depending on parameter choice. Numerical simulations are shown confirming our analytical
results.
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1. Introduction. In this paper we present a simple nonautonomous PDE which
exhibits the self-replication of a spot solution in R

N , N ≥ 1. The PDE is

(1) ut = Δu− u+
(1 + a|x|q)up∫

RN (1 + a|x|q)up+1dx
, x ∈ R

N ; ∇u(0, t) = 0,

Examples of this phenomenon are shown in Figure 1. Self-replication was first ob-
served by Pearson in the Gray–Scott model [23]. Since then, many theoretical and
numerical studies have looked at self-replication in both one and two spatial dimen-
sions for the Gray–Scott model in different parameter regimes [25], [24], [21], [22], [19],
[4], [3], [14], [5]. Many other reaction-diffusion systems have been found to exhibit
self-replication behavior. These include the ferrocyanide-iodide-sulfite system [11],
the Belousov–Zhabotinsky reaction [12], [18], the Gierer–Meinhardt model [16], [10],
[15], the Bonhoffer–van-der-Pol type system [7], [8], [9], and the Brusselator [13].

In an effort to classify reaction-diffusion systems that can exhibit pulse self-
replication, Nishiura and Ueyama, motivated by the numerical study of the Gray–
Scott model, proposed a set of necessary conditions for this phenomenon to occur in
[21]. Roughly stated, these conditions are the following:

The disappearance of the ground-state solution due to a fold point (saddle-
node bifurcation) that occurs when a control parameter is increased above a
certain threshold value.

(S1)
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Fig. 1. (a) Numerical simulation of (1) in one dimension with p = 2, q = 2, a = 0.08. Self-
replication is observed. (b) Numerical simulation of (1) in three dimensions, showing two different
types of self-replication. The snapshots show the cross section of the solution in the first quadrant
x, y, z > 0. The surface corresponds to the contour u = 0.6max(u); cross sections x = 0 and y = 0
are shown in a color map (online) with red corresponding to max(u) and blue to 0.6max(u). First
row: Spot-to-spot bifurcation due to instability of a nonradial eigenfunction. The parameters are
p = 2, q = 1.3, and a = 0.5. Second row: spot-to-ring bifurcation due to radial instability. The
parameters are p = 2, q = 3, a = 0.035. The spot-to-ring bifurcation is followed by ring-to-spot
bifurcation.

The existence of a dimple eigenfunction at the fold point, which is believed to
be responsible for the initiation of the self-replication process. By definition,
a dimple eigenfunction is a radially symmetric eigenfunction Φ(|x|) associated
with a zero eigenvalue at the fold point that decays as |x| → ∞ and that has
a positive zero (see Figure 3).

(S2)

Stability of the steady state solution on one side of the fold point.(S3)

The alignment of the fold points, so that the disappearance of K ground
states, with K = 1, 2, 3, . . . , occurs at roughly the same value of the control
parameter.

(S4)

These conditions are believed to be necessary (although not sufficient) for an
initiation of the self-replication event. They were first verified numerically for a certain
regime of the Gray–Scott model in [21], [6]. In a different regime, the Gray–Scott
model reduces to the so-called core problem [19], [5], [14]. After a scaling, the core
problem is

(2)

⎧⎨
⎩

Urr +
N−1
r Ur − U + U2V = 0; Vrr +

N−1
r Vr − aU2V = 0;

V (0) = 1; V ′(0) = 0 = U ′(0);
V, U > 0; U → 0 as r → ∞.

The existence of a fold point of (2) (condition (S1)) in one dimension was demonstrated
numerically in [19]. Conditions (S2) and (S3) were also numerically verified for (2)
in [14]. More recently, the following weaker version of condition (S1) was shown
analytically in [5]:

(S1∗) The steady state ceases to exist if a control parameter is increased above a
certain threshold value.

There are few analytical results for (2) in two or three dimensions (but see [19] for
some partial results).
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In this paper we show analytically that the simple model (1) can exhibit self-
replication in any dimension for some parameter values of p, q as a is sufficiently
increased from zero. We analytically verify condition (S1∗) under the following as-
sumptions:

(3)
p > 1 and q >

(p− 1)N

2
if N = 1 or 2,

1 < p <
N + 2

N − 2
and q >

(p− 1) (N − 1)

2
if N ≥ 3.

Provided that these assumptions hold, conditions (S2) and (S3) also hold under an
additional hypothesis that (S1) holds. In this case, a single self-replication event is
observed numerically in (1) as the parameter a is increased past some critical value
ac. In one dimension, the bifurcation structure and the self-replication mechanism are
analogous to what has been observed for the reduced Gray–Scott model (2); however,
unlike the studies [19], [5], we are able to verify not only condition (S1∗) but also
conditions (S2) and (S3) analytically, under an additional hypothesis that (S1) holds.

It appears difficult to verify condition (S1) analytically, even for this simplified
model: only the weaker condition (S1∗) is rigorously shown to hold under assumptions
(3). Based on numerical evidence, we conjecture that (S1) holds under the same
assumptions.

In dimensions two and three, the self-replication conditions (S1)–(S3) lead to a
radially symmetric bifurcation, whereby a spot bifurcates into a ring that concentrates
on the surface of an N -dimensional ball. However, there is another self-replication
mechanism that can occur. Namely, a spot can become unstable with respect to
nonradial perturbations of mode 2. Numerically, this leads to what we shall call
peanut splitting, whereby a radially symmetric spot starts to acquire a peanut-like
shape, which eventually pinches off and becomes two spots. We study both types
of self-replication of (1) in three dimensions; we demonstrate that both are possible
depending on choice of parameters (see Figure 1(b)). Analytically, we show that when
N = 3, p = 2, and q = 1, the spot will undergo peanut splitting if a is sufficiently
large, whereas no spot-to-ring bifurcation is expected for any value of a. On the other
hand, if p = 2, q > 1, both radial and nonradial splitting is possible. For q sufficiently
large, the radial splitting dominates as illustrated in Figure 1(b), row 2. To the best
of our knowledge, this is the first rigorous demonstration of self-replication in three
dimensions.

The summary of the paper is as follows. In section 2 we study the steady state
problem associated with (1). The main result is Theorem 2, which proves the bound-
edness of the bifurcation diagram under assumptions (3), thus verifying the condition
(S1∗). In section 3.1 we study radial stability and analytically verify conditions (S2)
and (S3). This fully characterizes self-replication in one dimension and also character-
izes radial replication in dimensions >1. In section 3.2 we address nonradial instability
to complete the classification of self-replication phenomena in three dimensions. In
section 4 we discuss some generalizations, compare our model to other models with
self-replication, and provide some open problems and concluding remarks.

2. Analysis of the ground state. We start our analysis by considering the
radially symmetric positive ground state solution of (1) which satisfies

urr +
N − 1

r
ur − u+ c1u

p (1 + arq) = 0, u′(0) = 0, u → 0 as r → ∞, u > 0,
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where

c1 :=
1

c0
∫∞
0 rN−1(1 + arq)up+1dr

and c0 is the surface area of a sphere in R
N . Next we scale u = c

1/(1−p)
1 ũ. After

dropping the tilde, the ground state solution satisfies

(4) urr +
N − 1

r
ur − u+ up (1 + arq) = 0, u′(0) = 0, u → 0 as r → ∞.

It is well known that the steady state problem (4) with a = 0 admits a unique
solution when p ∈ (1, p∗), where

(5) p∗ =

{
(N+2)
(N−2) , N ≥ 3,

∞, N ≤ 2,

is the critical exponent [2], [17]. Starting from a = 0 we wish to examine how the
solution depends on a. For a fixed a, define s := u(0) and let s0 := s(0) be the height
of the solution with a = 0. To show that the solution also exists with a > 0, consider
the linearized problem at a = 0, s = s0:

Δφ− φ+ pup−1φ = λφ.

The kernel of the operator φ → Δφ − φ + pup−1φ is spanned by {ux1 , . . . uxn}; this
operator is invertible when restricted to radially symmetric functions. (See [27] for
more details.) It follows that there exists a solution to (4) whenever a is sufficiently
close to zero, with s close to s0, using a bifurcation argument similar to the one of
Crandall and Rabinowitz [1]. The detailed proof of this local existence is given in
Appendix C. We summarize the result as follows.

Lemma 1. Suppose that p ∈ (1, p∗). For all sufficiently small a, there exists
a C1 function s(a) and a solution u(r; a) to (4) with the following properties: (i)
s(a) = u(0; a); (ii) u(r; a) > 0; (iii) s(0) = s0; and (iv) u(r, a) is C1 in a.

We remark that a global bifurcation theory is still an open question. However,
the fact that u > 0 along the entire bifurcation curve is shown in Lemma 4 below.

The solution to (4) is not necessarily unique when a �= 0: depending on parameter
values, there can be other possible solutions that are nonmonotone and whose peak
can be located far from the origin with s near zero. For example, consider (4) with
N = 3, p = 2. The bifurcation diagram s = u(0) versus a is computed numerically
in Figure 2(b) for several different values of q. When q > 1, the bifurcation curve is
bounded and there is a fold point at some a = ac beyond which there are no solutions.
This fold point is precisely condition (S1). On the other hand, if q ≤ 1, then a solution
exists for all a > 0 with s → 0 as a → ∞. A typical steady state profile evolution along
the bifurcation curve in one dimension is shown in Figure 2(a); note the “multibump”
solutions along the lower part of the bifurcation branch. These are studied in detail
using asymptotic methods in Appendix A.

The main goal of this section is to classify under which conditions on p, q,N the
bifurcation graph is bounded in the (a, s) plane. The following theorem provides these
conditions.

Theorem 2. Given a ≥ 0, let u(r) be a positive solution to (4) and let

(6) s := u(0).
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(a () b)

Fig. 2. Bifurcation diagram for (4) of a versus s = u(0) with p = 2 and for several different
values of q as indicated. (a) N = 1. There is a fold point for all values of q. The bifurcation graph
changes its topology at around q = 2.8 but is bounded for all q. The inserts show the profile of the
steady state u(r) for q = 1.5, p = 2 and for s as indicated. (b) N = 3. Fold point is indicated by
an empty circle. Nonradial instability threshold is indicated with a filled circle. If q > 2.1, then fold
point instability dominates. If q < 2.1, then nonradial instability dominates. The fold point exists
if q > 1; the bifurcation graph is unbounded if q < 1.

Define

q� :=
N(p− 1)− 2(p+ 1)

2
; q� :=

(p− 1)N

2
;(7a)

qc :=
(p− 1) (N − 1)

2
.(7b)

The following holds:
(i) Suppose that p ∈ (1, p�), where p� is the critical exponent given by (5) and

q ≥ 0. Given any constant a0 > 0, there exists a constant s0 = s0(a0, p, q)
such that if 0 ≤ a < a0, then the solution to (4) does not exist if s > s0.

(ii) Suppose that either N ≥ 3 and q > qc or else N ≤ 2 and q > q�. There exists
a constant a0 such the positive solution to (4) does not exist if a > a0.

(iii) If N ≥ 3, q� < q < qc, and q ≥ 0, then the positive solution to (4) exists for
all a ≥ 0, provided that 1 < p < p�.

When (i) and (ii) simultaneously hold, the bifurcation graph in the positive (a, s)
plane is bounded. Note that q� < 0 iff p < p� and moreover q� < qc < q�. In
particular, statements (i) and (ii) hold simultaneously in dimension N ≥ 3 provided
that q > qc and p ∈ (1, p�); they hold in dimension N = 1 or 2 provided that q > q�

and p > 1. In conclusion, the bifurcation curve is bounded whenever (3) is satisfied.
This proves the weaker version (S1∗) of the key condition (S1).

Remark 1. We conjecture that the bifurcation curve exhibits a fold point when-
ever it is bounded, i.e., condition (S1) holds under conditions (3). As an example,
consider Figure 2(b), where N = 3, p = 2 < p� = 5: according to Theorem 2,
the bifurcation curve is bounded. Numerically, the fold point is observed whenever
q > 1 = qc. On the other hand the bifurcation curve is unbounded when q ≤ 1; this is
in agreement with statement (iii) of Theorem 2. In this case, numerics indicate that
no fold point exists. (For the special case N = 3, p = 2, q = 1, the nonexistence of the
fold point is rigorously proved in section 3.2.)



SPOT REPLICATION 3569

Remark 2. We think that q� in (ii) can be replaced by qc and the condition N ≥ 3
can be eliminated in (ii). However, we were unable to prove that.

Remark 3. We also conjecture that the condition p < p� is not necessary in (iii);
it is sufficient that q� < q < qc for (iii) to hold.

The proof of (ii) and (iii) of Theorem 2 is an immediate consequence of the
following lemma.

Lemma 3. Consider the problem

(8) u′′ +
N − 1

r
u′ − u+ (ε+ rq)up = 0; u′(0) = 0, u > 0; u → 0 as r → ∞.

Suppose that 1 < p < p�, and let q�, q
�, qc be as given by (7). We have the following

results:
(i) Suppose that q satisfies

(9) q > qc if N ≥ 3 or q > q� if N ≤ 2.

Then there exists ε0 = ε0(p, q,N) such that (8) has no solution for all 0 ≤
ε < ε0.

(ii) Suppose that N ≥ 3 and q = qc and ε = 0. Then (8) has no solution.
(iii) Suppose that N ≥ 3 and q� < q < qc. Then the solution to (8) exists for all

ε > 0. Such solution is unique if ε = 0.
We now give proofs of Theorem 2 and Lemma 3.
Proof of Theorem 2. We first show (i). First, suppose that q �= 0. Consider the

initial value problem

(10) vrr +
N − 1

r
vr − v + (1 + arq)vp = 0, v′(0) = 0, v(0) = s.

Rescale

v = sV ; r = τy,

where τ is to be specified. Then the equation for V is

(11) Vyy +
N − 1

y
Vy − τ2V +(τ2sp−1+aτq+2sp−1yq)V p = 0; V ′(0) = 0, V (0) = 1.

Choosing τ = s−(p−1)/2, we then obtain

(12) Vyy +
N − 1

y
Vy + V p − ε1V + ε2y

qV p = 0; V ′(0) = 0, V (0) = 1,

where

(13) ε1 = s−(p−1); ε2 = as−q(p−1)/2.

Now consider the limiting problem

(14) V0yy +
N − 1

y
V0y + V p

0 = 0; V0(0) = 1, V ′
0(0) = 0.

In Lemma 13 (see Appendix B) we show that for p ∈ (1, p�) , V0 becomes negative
at some y = y0. In particular, there exists y1 > y0 and C1 > 0 such that v0(y1) <
−C1 < 0. By continuity of solutions to the initial value problem with respect to
parameters, V can be made arbitrarily close to V0 by choosing any sufficiently small
ε1,ε2. In particular, there exists a ε = ε(p, q) > 0 such that for all ε1, ε2 < ε, we have
|V (y1)− V0(y1)| < C1/2 =⇒ V (y1) < 0 . Now given a0 > 0 and for any 0 < a ≤ a0,
note that ε1, ε2 < ε whenever s > s0, where s0 := max(ε−1/(p−1), (ε/a0)

−2/[q(p−1)]).
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(The quantity (ε/a0)
−2/[q(p−1)] is interpreted to be zero if q = 0.) In this case, v has

a root and hence no solution to (4) exists when a < a0 and s > s0. This proves (i).
To prove (ii) we apply Lemma 3 after a change of variables u → a1/(1−p)u. Then

(4) becomes (8) with ε = 1/a. Statement (i) of Lemma 3 immediately yields the
desired result. The proof of (iii) follows from statement (iii) of Lemma 3.

Proof of Lemma 3. We start with the nonexistence results (i) and (ii) which are
proved in Steps 1 to 4. Result (iii) is proved in Step 5.

Step 1. We first derive the following key identity:

(15)

∫ ∞

0

rN−mup+1 [ε− c1r
q ] dr > 0,

where

m =

{
2, N ≥ 3,
1, N ≤ 2,

c1 =

{
2

(p−1)(N−1) (q − qc), N ≥ 3,

2
(p−1)N (q − q�), N ≤ 2.

In one and two dimensions, this is a consequence of Pohozhaev-type inequalities as
we now show. First, multiply (8) by rN−1u and integrate by parts to obtain

(16) −
∫ ∞

0

rN−1u′2dr −
∫ ∞

0

rN−1u2dr +

∫ ∞

0

rN−1 (ε+ rq)up+1dr = 0.

Next, multiply (8) by rNu′ and integrate by parts to get

(17)

(
−1 +

N

2

)∫ ∞

0

rN−1u′2dr +
N

2

∫ ∞

0

rN−1u2dr

− N + q

p+ 1

∫ ∞

0

rN−1+qup+1dr − ε
N

p+ 1

∫ ∞

0

rN−1up+1dr = 0,

where the boundary terms vanish by Lemma 11 of Appendix B. Combining (16) and
(17) we obtain∫ ∞

0

rN−1up+1

[
ε− 2q − (p− 1)N

N (p− 1)
rq
]
dr =

2 (p+ 1)

N (p− 1)

∫ ∞

0

rN−1u′2dr.

This proves (15) in the case N = 1, 2. To obtain a sharper inequality for dimensions
N ≥ 3, we derive another identity as follows. Differentiating (8) with respect to r we
obtain

(18)
1

rN−1

(
rN−1u′′)′ − N − 1

r2
u′ − u′ + (ε+ rq) pup−1u′ + qrq−1up = 0.

Multiplying (18) by rN−1u, integrating on [0,∞], and using integration by parts we
get ∫ ∞

0

{(
u′rN−1

)′
u′ + (N − 1) rN−3uu′ − rN−1uu′

+(rq + ε) rN−1pupu′ + qrq−1up+1rN−1

}
dr = 0.

Using (8) and rearranging we obtain
(19)∫ ∞

0

rN−1 (p− 1) (rq + ε)upu′dr+q

∫ ∞

0

rN−2+qup+1dr =
(N − 1)

2

∫ ∞

0

rN−3
(
u2
)′
dr.
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Note that ∫ ∞

0

rN−1+qupu′dr = −N − 1 + q

p+ 1

∫ ∞

0

rN−2+qup+1dr.

Thus we obtain
(20)∫ ∞

0

rN−2up+1

[
ε−

(
2q − (p− 1)(N − 1)

(p− 1) (N − 1)

)
rq
]
dr = −1

2

p+ 1

p− 1

∫ ∞

0

rN−3
(
u2
)′
dr,

and moreover,

(21) −
∫ ∞

0

rN−3
(
u2
)′
dr =

{
(N − 3)

∫∞
0 rN−4u2dr, N > 4

u(0)2, N = 3
> 0.

This proves (15) for dimension N ≥ 3.
Step 2. Given q that satisfies (9), note that (15) holds with c1 > 0. We now show

that there exists a constant C such that u(0) > Cε−1/(p−1) for all sufficiently small
ε. Let r0 = (1/c1)

1/qε1/q be the root of ε− c1r
q = 0. Then∫ ∞

0

rN−mup+1 [ε− c1r
q] dr =

∫ r0

0

rN−mup+1 [ε− c1r
q] dr

−
∫ ∞

r0

rN−mup+1 [c1r
q − ε] dr > 0

so that ∫ r0

0

rN−mup+1 [ε− c1r
q] dr >

∫ ∞

r0

rN−mup+1 [c1r
q − ε] dr

>

∫ r1+r0

r1

rN−mup+1 [c1r
q − ε] dr

for any r1 ≥ r0. In particular, choose r1 to satisfy ε−c1r
q = −ε, i.e., r1 = (2/c1)

1/qε1/q.
Then ε ≥ ε− c1r

q on [0, r0] and c1r
q − ε ≥ ε on [r1, r1 + r0] so that∫ r0

0

rN−mup+1dr >

∫ r1+r0

r1

rN−mup+1dr.

It follows that rN−mup+1 cannot be increasing on [0, r0 + r1]. In particular, u cannot
be increasing on [0, C1ε

1/q], where C1 = (2/c1)
1/q+(1/c1)

1/q. Now consider the initial
value problem

(22) 0 = ûrr +
N − 1

r
ûr − û+ ûp(ε+ rq); û(0) = ξ, û′(0) = 0.

We claim that there exists a constant C2 such that û is nondecreasing on the interval
[0, C1ε

1/q] whenever ξ < C2ε
−1/(p−1). In fact, note that by the comparison principle,

û < ξv, where v solves vrr + N−1
r vr − v = 0, v′(0) = 0, v(0) = 1. It follows that

û < ξC0 on [0, 1], where C0 ≡ v(1) > 1 is some constant independent of ε, p, q, ξ. Now
suppose that u is increasing on [0, rm] and has a maximum at rm < C1ε

1/q. At such
a point,

ε+ rqm =
1

ûp−1
− u′′(rm)

ûp
≥ C1−p

0

ξp−1
.
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It follows that

rm ≥
(
C1−p

0

ξp−1
− ε

)1/q

> C1ε
1/q

whenever

ξ <
C−1

0

(Cq
1 + 1)

1
p−1 ε1/(p−1)

.

Therefore û is increasing on [0, C1ε
1/q] whenever ξ < C2ε

−1/(p−1), where C2 =
C−1

0

(Cq
1+1)

1
p−1

. It follows that u(0) > C2ε
−1/(p−1).

Step 3. We claim that there exists a number ξ0 such that for all ε < 1 and all
ξ > ξ0, the solution û to (22) crosses the x-axis. To see this, let

û = ξv; r = ξ
1−p
q+2 s.

Then (22) becomes

(23) vss +
(N − 1)

s
vs + sqvp = ξ−

2(p−1)
q+2 v − εξ

q(p−1)
q+2 vp; v(0) = 1, v′(0) = 0.

Assume there is no such ξ0 as required. Then there are ξk → ∞ and 0 ≤ εk ≤ 1
such that the solution of (23) with ξ = ξk and ε = εk is positive for s > 0. Define

βk := εkξ
q(p−1)
q+2

k . After passing to a subsequence, we may assume that βk → β. We
separate the argument into two parts.

Case 1. β = ∞. Let t = β
1/2
k s. Then (23) becomes

(24) vtt +
(N − 1)

t
vt +

1

βk

(
β
−q/2
k tqvp − ξ

− 2(p−1)
q+2

k v

)
+ vp = 0

with v(0) = 1 and v′(0) = 0. In the limit k → ∞, (24) becomes

(25) vtt +
(N − 1)

t
vt + vp = 0; v(0) = 1, v′(0) = 0.

Now by Lemma 13 in Appendix B, the solution to (25) crosses zero, provided that
p < p�. By continuity, it follows that the solution v to (24) also crosses zero when k
is sufficiently large, which is a contradiction.

Case 2. β < ∞. In this case, the solution to (23) converges to the solution to

(26) vs +
(N − 1)

s
vs + sqvp + βvp = 0; v(0) = 1, v′(0) = 0.

By Lemma 13 in Appendix B, the solution to (26) crosses zero, provided p� > p > 1
and q > q�. By continuity, it follows that the solution v to (23) also crosses when k
is large, which is a contradiction again. This proves the claim.

Step 4. Let ε0 = min{1, (C2

ξ0
)p−1}. Suppose that there exists a solution to (8) with

ε < ε0. Then from Step 2, we have that u(0) > ξ0. But then by Step 3, u(x) will cross
the x-axis, a contradiction to the assumption that u > 0 for all x. This concludes the
proof of statement (i). To prove (ii), note that in the case ε = 0, q = qc, the identity
(20) reduces to 0 = − ∫∞

0
rN−3(u2)′, which contradicts (21).

Step 5. We now discuss the existence results with ε = 0 and N ≥ 3. If p ∈
(1, p�) where p� = N+2

N−2 is the critical exponent, then the existence is an immediate
consequence of a more general result proved in [2], whose statement we reproduce
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here for the reader’s convenience. Namely, consider the more general problem

(27) 0 = urr +
N − 1

r
ur − u+ uph(r).

Then Corollary 4.8 of [2] implies that a solution to (27) exists provided that
p ∈ (1, p�) and |h (r)| < C + rq for some constant C > 0, 0 < q < qc, for all r ≥ 0.
We remark that the necessary condition q < qc follows immediately from (15) with
ε = 0; the condition q� < q is the result of combining Pohozhaev identities (16), (17)
with ε = 0, ∫ ∞

0

rN−1u2dr +

(
−1 +

N

2
− N + q

p+ 1

)∫ ∞

0

rN−1+qup+1 = 0,

so that −1 + N
2 − N+q

p+1 > 0 ⇐⇒ q� < q.

Next we show uniqueness when q ∈ (q�, qc) and ε = 0. We follow the method
outlined in [17], which works for more general equations of the form (27). Make a
change of variables

u(r) = v(s)g(r),

where s = s(r) is to be specified shortly. We have

ur = vs
ds

dr
g + vg′,

urr = vss

(
ds

dr

)2

g + 2vsg
′ ds
dr

+ vs
d2s

dr2
g + vg′′

so that (27) becomes

vss

(
ds

dr

)2

g+vs

(
2g′

ds

dr
+

d2s

dr2
g +

N − 1

r

ds

dr
g

)
+v

(
g′′ +

N − 1

r
g′ − g

)
+vpgph = 0.

Next choose s so that

d2s

dr2
= −ds

dr

(
2
g′

g
+

N − 1

r

)

so that

ds

dr
= g−2r−(N−1).

Also choose g so that

gph =

(
ds

dr

)2

g = g−3r−2(N−1),

g = h
1

−3−p r
2(N−1)
−3−p .

We then get

(28) vss + F (r)v + vp = 0,

where

(29) F (r) =

(
g′′ +

N − 1

r
g′ − g

)
g3r2(N−1); g = h

1
−3−p r

2(N−1)
−3−p .

For (28), Theorem 1 of [17] guarantees uniqueness, provided that F (r) satisfies the
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so-called Λ-property on (0,∞); that is, F (r) has at most one maximum and no interior
minimum. It remains to verify this property.

Note that

qc − q� =
p+ 3

2
.

This suggests a change of variables,

δ := (qc − q)
2

p+ 3
.

Then

(30) q ∈ (q�, qc) ⇐⇒ δ ∈ (0, 1)

and using h = rq , F (r) becomes

F (r) = −c1r
2(−1+δ) − r2δ , where c1 := (N − 1− δ)(N − 3 + δ)/4 > 0.

Provided that (30) holds, note that F ′(r) = −[2(δ − 1)c1 + 2δr2]r−3+2δ has a unique
positive root at r =

√
c1(1− δ)/δ and F (r) is increasing for small positive r. This

shows that F (r) has the Λ-property. Therefore Theorem 1 of [17] proves the uniqueness
of solution to (8) with ε = 0 provided q ∈ (q�, qc) .

Finally, we show that the entire bifurcation branch is positive.
Lemma 4. Consider the bifurcation curve in (a, s) for the solution u(r) to (4)

where s = u(0; a). Then u > 0 for all s > 0 along the bifurcation curve.
Proof. First, suppose that u(r) solves

(31) urr +
N − 1

r
ur − u+ |u|p (1 + arq) = 0, u′(0) = 0, u → 0 as r → ∞.

Moreover, suppose that u(0) > 0 and a > 0. We claim that u(r) > 0 for all r ≥ 0.
We proceed by contradiction: suppose that u(r) < 0 for some r. Then u has a global
minimum at some point r0 with u(r0) < 0. But then urr(r0) ≥ 0, ur(r0) = 0 so that
0 = urr(r0)+

N−1
r ur(r0)−u(r0)+ |u(r0)|p (1+arq0) ≥ −u(r0)+ |u(r0)|p (1+arq0) > 0.

This shows that u(r) ≥ 0 for all r > 0. To show that u(r) > 0, suppose that u(r0) = 0
for some r0 with u(r) ≥ 0 elsewhere. Then u′(r0) = 0, so by uniqueness of solutions
to ODEs, u = 0 for all r ≥ 0, contradicting u(0) > 0. This proves the claim.

Now consider the bifurcation curve (a, s) except that up is replaced by |u|p in (4).
Then u > 0 along the bifurcation curve. But then u also solves the original problem
(4) and u > 0.

We remark that a sign-change solution may exist if the condition u → 0 as r → ∞
is dropped in (31).

Theorem 2 provides conditions for when the bifurcation curve is bounded. To
obtain a more refined information, we examine what happens to the bifurcation curve
when u(0) is small. In this case, there may exist solutions to (4) which attain max-
imum far away from the origin. These are studied using formal asymptotics in Ap-
pendix A. In dimensions N ≥ 2, this analysis also leads to the threshold q = qc.

3. Stability analysis. We now study the stability of the time-dependent prob-
lem (1). It is convenient to consider a more general problem,

(32)

⎧⎨
⎩

ut = Δu − u+ uph(x; a)
c0∫

RN up+1h(x; a)dx
, x ∈ R

N ,

∇u(0, t) = 0, u → 0 as |x| → ∞,
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where h(x) = h(r; a) is a radially symmetric function depending on the parameter
a; the model (1) corresponds to h = 1 + arq . The constant c0 is chosen so that the
time-independent solution is the ground state satisfying

(33) u0rr+
N − 1

r
u0r−u0+up

0h(r; a) = 0, u′
0(0) = 0, u0 → 0 as r → ∞, u0 > 0;

that is,

c0 =

∫
RN

up+1
0 hdx.

Since the constant c0 can be scaled out by scaling u, its inclusion does not change the
stability properties.

While some of the results (and derivations) below are valid for a more general
function h, we do not attempt to state the most general version of our results and
will simply use h = 1 + aqq whenever required. In particular the proof of Lemma 5
and therefore Theorem 6 which relies on it, makes explicit use of h = 1 + arq.

The condition ∇u(0, t) = 0 will be necessary to avoid translational instabilities.
Equivalently, we may simply restrict (32) to the positive quadrant Ω = {(x1, x2, . . . , xN ) :
xi > 0, i = 1 . . . N} and impose Neumann boundary conditions on ∂Ω. In this setting,
the spike solution at the center becomes a boundary spike at the corner of Ω.

When h = 1, the problem (32) and its generalizations are sometimes referred to
as the shadow system [28]. It naturally occurs in the high diffusivity ratio limit of
some reaction-diffusion systems, for example, the Gierer–Meinhardt model [27] and
the Gray–Scott model [20], [4]. The main feature of (32) with h = 1 is that the
integral term in the denominator stabilizes the large eigenvalues [28].

We begin our investigation by linearizing around the steady state. Set

u(x, t) = u(r) + eλtZ(x),

where u(r) satisfies (33) (here and below we drop the subscript 0 for convenience) and
Z � 1. Define

(34) LZ := ΔZ − Z + up−1hpZ.

Then we have

(35)

{
λZ = LZ − uph (p+1)

c0

∫
RN Zuphdx.

∇Z(0) = 0; Z → 0 as |x| → ∞.

In one dimension the condition Z ′(0) = 0 ensures that Z is even (i.e., radially symmet-
ric) eigenfunction. In dimensions N ≥ 2, the problem (35) has a radially symmetric
eigenfunction but may also have nonradially symmetric modes. We start by studying
radially symmetric perturbations.

3.1. Radially symmetric perturbations. In this section we examine the ra-
dial stability of (32). That is, we consider solutions (Z, λ) to (35), where Z is restricted
to the space of radially symmetric functions. As before, let

(36) s = u(0; a),

where u(x; a) is the ground state solution to (33). We will also assume that

(37) h(x) = 1 + a |x|q ; p ∈ (1, p�) if N ≥ 3 or p > 1 if N = 1 or 2.

Then there is a unique value s0 with a = 0 which corresponds to the unique ground
state solution to (33) with a = 0 [17]. Now consider the bifurcation curve (s, a(s))
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going through s = s0, a = 0. Suppose that such curve has a fold point. Our main
result here is to show condition (S3) in one dimension. In addition, we will show that
the even eigenfunction at the fold point of (35) corresponding to a zero eigenvalue
has a root; this will prove condition (S2). We start with the following lemma, which
explicitly uses the form (37).

Lemma 5. Let h = 1 + arq and s = u(0; a), where u(x; a) is the ground state
solution to (33). Suppose the bifurcation curve a = a(s) has the following properties:
(1) a(s0) = 0 for some s0; (2) a

′(sc) = 0 for some sc and a′(s) �= 0 for all s ∈ (sc, s0].
Then the following conditions are equivalent for s ∈ [sc, s0]:

(i) The local eigenvalue problem

(38) LZ = λZ, Z ′(r) = 0, Z(r) → 0 as r → ∞,

admits a zero eigenvalue λ = 0 corresponding to a radially symmetric eigenfunction
Z.

(ii) ∂a
∂s = 0, where us = ∂u/∂s.

(iii) Lus = 0.
Proof. Note that us satisfies

(39) Lus = −upha
∂a

∂s
.

It immediately follows that (ii) =⇒ (iii) =⇒ (i). The main difficulty is showing that
(i) =⇒ (ii). For this, we will make use of the following identity:

(40) Lu = uph (p− 1) .

We proceed in three steps.
Step 1. Suppose that (38) admits a zero eigenvalue with a radial Z(r) and with

∂a
∂s �= 0. We claim that Z(r) has at least two positive roots. Multiplying (40) by Z

we obtain
∫∞
0 Zup(1 + arq)rN−1dr = 0. It follows that Z has at least one positive

root. Let r1 > 0 be the first root of Z. Multiplying (39) by Z, integrating by parts,
we obtain that

∫∞
0

ZuprqrN−1dr = 0, where we used ha = rq and ∂a
∂s �= 0. Taking a

linear combination, we then obtain
∫∞
0

(rq1 − rq)ZuprN−1dr = 0. Thus Z must have a
root other than r1.

Step 2. Consider the problem

(41) LY = 0; Y (0) = 1, Y ′(0) = 0.

We claim that for s ∈ (sc, s0], Y has at most one positive root. First, note that the
eigenvalue problem (38) has exactly one positive eigenvalue when s = s0, a = 0;
the corresponding eigenfunction Z(r) is radial and does not change signs. By the
oscillation theorem, it follows that the solution Y of (41) has precisely one zero when
s = s0. Next, suppose there exists s ∈ (sc, s0] such that (41) has two roots. Since it is
known that Y has only one root when s = s0, by continuity, there must exist s̄ such
that Y has one positive root when s ∈ [s̄, s0] but two roots for s < s̄. Now consider
a sequence sk → s̄ with sk < s̄ and let r1,k and r2,k denote the two roots of Y (r; sk)
with r1,k < r2,k. Let r1 = lim supk→∞ r1,k and let r2 = lim supk→∞ r2,k. Then either
r1 = r2 or r2 = ∞. The former case implies that when s = s̄, Y (r1) = Y ′(r1) = 0;
but then Y (r) ≡ 0, contradicting Y (0) = 1. Hence we have r2 = ∞ so that Y (r) → 0
as r → ∞. But this implies that when s = s̄, Y is an eigenfunction satisfying (38)
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Fig. 3. (a) The dimple eigenfunction at the fold point, corresponding to the zero eigenvalue
of (1) with N = 1, p = 2, q = 2, a = 0.079. The shape of the eigenfunction is responsible for pulse
replication. (b) The dimple eigenfunction for the reduced Gray–Scott model (2), N = 1, taken from
[14].

with λ = 0, having a unique positive root. By Step 1, this implies ∂a
∂s = 0, which

contradicts the assumption that s ∈ (sc, s0].
Step 3. If s ∈ (sc, s0] and λ = 0, Step 2 shows that Z has at most a root. But

this contradicts Step 1.
We now state our main result for stability with respect to radially symmetric

perturbations.
Theorem 6. Suppose that h is as given in (37) and let s = u(0; a), where u(x; a)

is the ground state solution to (33). Suppose the bifurcation curve a = a(s) has the
following properties:

(i) a(s0) = 0 for some s0;
(ii) a′(sc) = 0 for some sc and a′(s) �= 0 for all s ∈ (sc, s0].
If s = sc, then (35) admits a zero eigenvalue whose eigenfunction is given by

Z = ∂u
∂s |s=sc . Moreover, Z(r) has at least one root r > 0. Thus condition (S2) is

proven.
Let s ∈ (sc, s0]. By Lemma 5, the corresponding nonlocal eigenvalue problem (35)

is stable with respect to radially symmetric perturbations.
An example of the eigenfunction ∂u

∂s |s=sc with N = 1, p = 2, q = 2 is shown in
Figure 3. The pulse splitting as observed in Figure 1(a) is due to its “upside-down
Mexican hat” shape.

Note that Theorem 6 provides a partial generalization of [28], where the case
h = 1 was proved.1 Theorem 6 relies on the following lemma.

Lemma 7. Consider the local radially symmetric eigenvalue problem

(42) LΦ = λΦ; Φ is radially symmetric

and the corresponding nonlocal problem,

(43) λZ = LZ − uph
(p+ 1)

c0

∫
RN

Zuphdx; Z is radially symmetric.

1In [28], the stability of the problem

ut = Δu− u+ up 1
∫
RN umdx

was considered; the case h = 1 in (32) corresponds to m = p + 1.
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Suppose (42) admits a unique positive eigenvalue. Then the nonlocal problem (43) is
stable, i.e., it has no positive eigenvalues. Suppose (42) admits at least two positive
eigenvalues. Then the nonlocal eigenvalue problem (35) is unstable, i.e., it admits at
least one positive eigenvalue.

Proof. Note that the eigenvalue problem (43) is self-adjoint so that the eigenvalues
are all purely real. There are two cases to consider. First, suppose that Z is an
eigenfunction which satisfies (43) but does not satisfy (42); that is,

(44)

∫
RN

Zuphdx �= 0.

Then we may scale Z so that (43) becomes

(45) (L − λ)Z = uph;

∫
RN

Zuphdx =
c0

p+ 1
.

Define

f(λ) :=

∫
RN

(L− λ)−1 [uph]uphdx.

Then (45) becomes

(46) f(λ) =
c0

p+ 1
.

We compute

f ′(λ) =
∫
RN

(L − λ)−2 [uph]uphdx

=

∫
RN

{
(L− λ)−1 [uph]

}2
dx

so that f is always increasing. Also note that f(λ) has a singularity at every positive
eigenvalue of the local problem (42). Suppose that (42) admits K positive eigenvalues,
K ≥ 1. Then f(λ) has K vertical asymptotes for positive λ. Now from (40) we note
that

f(0) =

∫
RN

u

p− 1
uphdx =

c0
p− 1

so that f(0) > c0
p+1 . Moreover, f(λ) → 0 as λ → ∞. Thus there are precisely K − 1

positive solutions to (46).
We have shown that if K ≥ 2, then (43) is unstable. It remains to show that (43)

is stable when K = 1. Then there are precisely K − 1 = 0 positive solutions (46);
hence there are no positive eigenvalues of (43) whose eigenfunction satisfies (44). It
remains to consider the case

∫
Zuph = 0; K = 1. But then Z satisfies LZ = λZ.

Thus λ = λ1, where λ1 is the unique positive eigenvalue of (42). Now multiplying
(40) by Z and integrating, we then obtain λ1

∫
uZ = 0. Since we assumed λ1 �= 0,

and u > 0, this means that Z must change sign. But this contradicts the fact that Z
is the eigenfunction of the principal eigenvalue of the local problem (42).

Proof of Theorem 6. First, note that when a = 0, s = s0, we have h(x) = 1. In this
case, the problem LZ = 0 admits N independent solutions given by Zk = êku

′(r), k =
1 . . .N , where êk is the kth unit vector and u(r) is the radially symmetric ground state
solution to (33) with h = 1. Thus the local eigenvalue problem LZ = λZ admits N
eigenfunctions corresponding to a zero eigenvalue. Moreover, it is well known that u(r)
is unique and is a decreasing function [17]. It follows that the nodal set {x : Zk = 0}
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ε {x : xk = 0} , which divides RN into exactly two connected sets. By the oscillation
theorem there must be a positive eigenvalue whose eigenfunction has no root. Such
an eigenvalue is unique and the corresponding eigenfunction is radially symmetric; all
other radially symmetric eigenfunctions correspond to strictly negative eigenvalues.
This proves that (42) admits precisely one positive eigenvalue when s = s0. Next, note
that the eigenvalues are all real since (43) is self-adjoint. By Lemma 5, the eigenvalues
cannot be zero for s ∈ (sc, s0). By continuity it follows that (42) admits exactly one
positive eigenvalue for all s ∈ (sc, s0]. By Lemma 7, it then follows that (43) is stable.

We now prove that us = ∂u/∂s is an eigenfunction of (43) corresponding to λ = 0
whenever s = sc. Certainly Lus = 0 (see Lemma 5). We now show that

(47)

∫
RN

usu
phdx = 0

so that us is indeed an eigenfunction of (43) corresponding to λ = 0. This follows by
multiplying the identity (40) by us and then integrating by parts and using Lus = 0.
Equation (47) also shows that us has a strictly positive root since h, u > 0.

3.2. Nonradial perturbations in three dimensions. Theorem 6 shows that
the top branch of the bifurcation curve is stable with respect to radially symmetric
perturbations. This implies full stability in one dimension. However, in higher dimen-
sions, nonradial instabilities can and do occur. This study considers such instabilities
in three dimensions. As before, the starting point is the eigenvalue problem (35). We
then use spherical coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

ΔZ = Zrr +
2

r
Zr +

1

r2

(
1

sin2 θ
Zφφ +

1

sin θ
(sin θZθ)θ

)
.

We decompose the eigenfunction as

Z(x, y, z) = Φ(r)Y m
l (θ, φ); l = 0, 1, . . . ; m = 0,±1 . . .± l,

where Y m
l are the spherical harmonics (see, for example, Chapter 10 of [26]). Now

note that Y 0
0 = 1 so that by the orthogonality property of spherical harmonics, we

have
∫
Y m
l = 0, l ≥ 1, and

∫
hZup−1 = 0. In particular the nonlocal term in (35)

disappears so that Φ satisfies

λlΦ = Φrr +
2

r
Φr − γ

r2
Φ + phup−1Φ; γ = l(l+ 1), l ≥ 1.

Note that the case l = 0 corresponds to the radially symmetric eigenfunctions whose
stability was already characterized by Theorem 6. The case l = 1 corresponds to
translational modes; in such a case Y m

1 = x/r, y/r or z/r. In particular, if l = 1,
h = 1, then the solution is λ1 = 0, Φ = ur. In general, λ1 is typically unstable.
It is for this reason that we have imposed the condition ∇u(0, t) = 0 in (32); the
translational modes l = 1 are inadmissible (they do not satisfy ∇Z(0) = 0). Thus we
need to only consider the stability of nonradial nodes l ≥ 2. To get some insight, let us
consider the case h = 1 + arq with q ≥ qc, where qc is given in (7b). In Appendix A
we have constructed a ring-like solution with s = u(0) → 0, either for q = qc or q > qc.
Such solutions have the form

u(r) ∼ Cw(y) where y = r − r0, r0 � 1,
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where C = (arq0)
1/(1−p)

and w(y) is the one-dimensional ground state that satisfies
(50). Since w decays exponentially away from r0, to leading order we have

2
rφr− γ

r2φ ∼
O( 1

r0
) so that

(48) λlφ ∼ φyy − φ+ pwp−1φ.

It is well known that (48) admits a positive eigenvalue (in fact, it is a special case of
(42) with N = 1 and h = 1). This proves that λl > 0 for l ≥ 2 if u(0) is sufficiently
small. In particular, as the bifurcation curve is traversed in the direction of decreasing
s, the mode l = 2 eventually becomes unstable. This is illustrated in Figure 2(b).

Due to ordering principle for the local eigenvalue problem LZ = λZ, the eigen-
values are ordered λ2 ≥ λ3 ≥ λ4 ≥ · · · . However, no such ordering exists between
the radial eigenvalue λr and λ2, since λr satisfies the nonlocal problem (35). This
leads to the following question: As the bifurcation curve is traversed starting with
a = 0, u(0) = O(1), can the nonradial mode λ2 become unstable before the radial mode
λr? Since λr becomes unstable at the fold point, the answer is yes provided that the
bifurcation curve has no fold point. In particular, if the solution to (4) is unique for
all a > 0, then the fold point does not exist. We now show that this is the case when
p = 2 and q = qc = 1. Using Theorem 1 of [17], the solution is unique if the function
F (r) given by (29) with h(r) = 1 + ar satisfies the Λ property (as described below
(29)). After some algebra we simplify to obtain

F (r) = −r−6/5 (1 + ar)−14/5

(
r4a2 + 2r3a+ r2 +

2

5
ar +

4

25

)
,

F ′(r) =
−2

125
r−6/5 (1 + ar)

−14/5 (
25r4a2 + 50r3a− (75a2 − 50

)
r2 − 45ar − 12

)
.

Now clearly, F → −∞ as r → 0+. To show the Λ property, it suffices to show that
F ′ = 0 has a unique solution. But this follows from the Descartes rule of signs, since
the coefficients in the polynomial inside F ′(r) change sign precisely once.

To summarize, in the case p = 2, q = qc = 1, the radial mode λr is stable for all
a > 0; however, the nonradial mode λ2 becomes unstable for sufficiently large a.

When p = 2, q > 1, the bifurcation curve has a fold point, where λr = 0. In general
it is unknown whether λ2 becomes unstable before λr or vice versa, as a is increased.
However, if p = 2 and q is close to 1, then because of continuous dependence on
parameters, λ2 is destabilized before λr as a is increased. Numerically, we observe
that the opposite is true if q is sufficiently large, as the following two tables illustrate:

p = 2, q = 1.3
a s λr λ2

0.0000 4.1895 −0.79 −1.03
0.1104 3.1895 −0.62 −1.02
0.2311 2.2895 −0.44 −0.67
0.4410 1.1395 −0.18 −0.02
0.4523 1.0895 −0.17 0.00
0.6044 0.3895 −0.005 0.59
0.6046 0.3395 0.005 0.65
0.5981 0.2895 0.014 0.71
0.4370 0.0895 0.026 0.98
0.1647 0.001 0.0067 1.19

p = 2, q = 3
a s λr λ2

0.0000 4.1895 −0.79 −1.037
0.0183 3.6395 −0.54 −0.99
0.0343 2.5895 −0.024 −0.3
0.0344 2.5395 0.0015 −0.27
0.0343 2.4895 0.027 −0.23
0.0326 2.1895 0.18 0.00
0.0314 2.0895 0.23 0.066
0.0229 1.6395 0.42 0.39
0.0128 1.1395 0.46 0.66
0.0003 0.001 0.033 1.19

For p = 2 and a given q, these two tables list the values of λr and λ2, as well as
a = a(s), computed numerically. Starting with a = 0 =⇒ s = 4.1895, we followed



SPOT REPLICATION 3581

the bifurcation curve in the direction of decreasing s. When q = 1.3, the fold point
occurs at a ∼ 0.6046; numerics confirm that the radial node λr crosses zero at that
point (see also Theorem 6). However the nonradial mode λ2 becomes unstable at
around a ∼ 0.4523 on the top branch of the bifurcation curve. Hence in this case,
the mode λ2 becomes unstable before λr as a is increased from a = 0. When q = 3,
the opposite behavior is observed: the fold point occurs at a ∼ 0.0344, whereas the
nonradial mode λ2 is destabilized only on the bottom branch of the bifurcation curve.
In particular the top branch of the bifurcation curve is stable with respect to λ2 (and
hence, stable with respect to all nonradial perturbations due to the ordering property).
This is also illustrated in Figure 2(b), where the bifurcation curve is plotted along
the threshold values of a when λr = 0 or when λ2 = 0 for several different values of q
with p = 2.

4. Discussion. In this paper, we have shown that even a single PDE with het-
erogeneity has a self-replication structure similar to that of more complicated reaction-
diffusion systems, such as Gray–Scott. For our simpler model, we are able to prove
analytically Nishiura–Uyama conditions (S1∗) and—under an additional hypothesis
that (S1) also holds—conditions (S2) and (S3). These conditions are believed to be re-
sponsible for the initiation of the fully nonlinear self-replication process. The process
itself and the ensuing dynamics are still very poorly understood. Nishiura–Uyama
conditions are based on the steady state and its linearization; as such, they provide
little information about the fully nonlinear self-replication dynamics.

In the Gray–Scott model, peanut splitting is the dominant self-replication mech-
anism in two dimensions as observed by [23], [19], [20]. On the other hand, it was
observed numerically in [15] that either the radial or the peanut-type instability can
be dominant in the Gierer–Meinhardt model in two dimensions, depending on param-
eter values. Our simplified model has a similar structure: either instability is possible,
depending on how the parameters p, q are chosen.

We conclude with the following conjecture, which is a generalization of Corol-
lary 4.8 in [2].

Conjecture 8. Consider the system

(49) 0 = Δu− u+ uph(r); u > 0, u → 0 as r → ∞.

Suppose p > 1 and h(r) satisfiy

|h(r)| ≤ C (1 + rq) , where q ≥ 0 and q ∈ (q�, qc),

where C is some constant and q�, qc are given by (7). Then (49) has a radially sym-
metric solution.

In [2, Corollary 4.8], this result was shown under a more restrictive assumption
p ∈ (1, p�), in which case q� < 0. Here, we do not assume that p < p�; this assumption
is replaced with the more general assumption q > q�.

Appendix A. Asymptotic analysis of (4) with small u(0). We now examine
the behavior of the solution with small u(0). The goal is to use asymptotic methods
to construct radially symmetric solutions concentrating on a ring of a large radius.
Below we will determine the asymptotic magnitude of such a radius. The analysis is
different for N = 1 or N ≥ 2.

One dimension. We consider (4) with N = 1, in the limit a � 1:

uxx − u+ up(1 + axq) = 0; a � 1; u′(0) = 0; u > 0; u → 0 as x → ∞.
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We seek solutions of the form

u(x) ∼ w (y) +R(x); y = x− x0; x0 � 0, R � 1,

where w(y) is the (unique) one-dimensional ground state of the homogeneous problem,

(50) wyy − w + wp = 0; w′(0) = 0, w > 0, w → 0 as |y| → ∞,

and R is the small remainder term. Then R satisfies

(51) Ryy −R + pwp−1R+ axqwp = 0.

Note also that

(52) (wy)yy − wy + pwp−1wy = 0.

Multiplying (51) by wy, integrating from −x0 to ∞, and using (52), we get

(Rywy −Rwyy) |∞−x0
+ a

∫ ∞

−x0

(y + x0)
qwyw

pdy = 0.

Since w decays exponentially as |y| → ∞, we can replace
∫∞
−x0

by
∫∞
−∞ . Using inte-

gration by parts we estimate∫ ∞

−x0

(y + x0)
qwyw

pdy ∼ −
∫ ∞

−∞

1

p+ 1
wp+1q (y + x0)

q−1
dy

∼ − q

p+ 1
xq−1
0

∫ ∞

−∞
wp+1.

Now for small x, we have that Rxx −R ∼ 0 and w ∼ C0e
−|x−x0|. The constant C0 is

obtained by expanding w in the far-field |y| → ∞. Thus we have

w ∼ C0e
−x0ex; R ∼ C1e

x + C2e
−x; x ∼ 0.

Since R must remain small as x is increased, it follows that C1 = 0. Moreover,
(Rx + wx)x=0 = 0, which implies C2 = C0e

−x0 . We therefore obtain

(Rywy −Rwyy)y=−x0
= 2C2

0e
−2x0 .

This yields the following formula for x0:

(53) 2C2
0e

−2x0 ∼ a
q

p+ 1
xq−1
0

∫ ∞

−∞
wp+1dy; a � 1, x0 � 1.

In case p = 2, we have w(y) = 3
2 sech

2(y/2) and C0 = 6,
∫
w3dy = 36/5, so that

(54)
e−2x0

xq−1
0

∼ a
q

30
; p = 2.

In case p = 3, we have w(y) =
√
2 sech(y) and C0 = 2

√
2,
∫
w3dy = π

√
2, so that

(55)
e−2x0

xq−1
0

∼ aq
π
√
2

64
; p = 3.
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Ring solutions in a higher-dimension generic case. We consider (4) with
N ≥ 2 in the limit a � 1. It is convenient to set

ε := a1/q

so that (4) becomes

(56) 0 = urr +
N − 1

r
ur − u+ up(1 + (εr)

q
).

The expansion we use is

r =
1

ε
r0 + y; u = U0(y) + εU1(y) + · · · .

Expanding to two orders we obtain

arq = (r0 + εy)q = rq0 + εqrq−1
0 y + · · · ,

0 = U0yy − U0 + (1 + rq0)U
p
0 ,(57)

0 = U1yy − U1 +
(N − 1)

r0
U0y + (rq0 + 1) pUp−1

0 U1 + Up
0 qr

q−1
0 y.(58)

Multiply (58) by U0y and integrate by parts; using (57) we obtain

(59)
qrq0

(p+ 1)

∫ ∞

−∞
Up+1
0 dy = (N − 1)

∫ ∞

−∞
U2
0ydy.

The integrals can be further eliminated using Pohazhaev-type identities. Namely,
multiply (57) by U0 and integrate to get

(60) −
∫ ∞

−∞
U2
0ydy −

∫ ∞

−∞
U2
0dy + (1 + rq0)

∫ ∞

−∞
Up+1
0 dy.

Multiply (57) by yU0y and integrate to obtain

(61) −1

2

∫ ∞

−∞
U2
0ydy +

1

2

∫ ∞

−∞
U2
0dy − (1 + rq0)

∫ ∞

−∞

Up+1
0

p+ 1
dy = 0.

Combining (60) and (61) we obtain

(62) −2

∫ ∞

−∞
U2
0ydy + (1 + rq0)

∫ ∞

−∞
Up+1
0

(
1− 2

p+ 1

)
dy = 0.

Substituting (62) into (59) we finally obtain

(63) rq0 =
(N − 1) (p− 1)

2q − (N − 1) (p− 1)
.

The solution to (63) exists provided that

(64) q > qc =
(N − 1) (p− 1)

2
.



3584 CHIUN-CHUAN CHEN AND THEODORE KOLOKOLNIKOV

This is consistent with thresholds derived in Theorem 2 for the case N ≥ 3. In
particular, it is in agreement with the bifurcation diagram shown in Figure 2(b): for
q > qc, the curve approaches a → 0 as s → 0.

Ring solutions in dimension N = 3, threshold case p = q+1. The analysis
is much more involved. For simplicity, we consider only the case p = 2. However, the
result generalizes without difficulty for any p > 1. We summarize the result as follows.

Proposition 9. Suppose N = 3, p = 2, and q = 1. In the limit a � 1, let
r0 � 1 be the large solution to the equation

a =
1

30
r−2
0 exp (2r0) ; a, r0 � 1.

Then there exist solutions of (4) of the form

u(r) ∼ 1

r0a
w(r − r0).

Proof of Proposition 9. We rescale

u(r) =
1

r0a
U(r)

and define

ε =
1

ar0

so that

(65) 0 = Urr +
2

r
Ur − U + U2

(
ε+

r

r0

)
.

The main idea is to separately solve the equation on [0, r0], then on [r0,∞). Then ε
will be determined by requiring that U

(
r−0
)
= U(r+0 ). So we treat (65) as two separate

equations to solve: the first on [0, r0] with boundary conditions U ′(0) = 0 = U ′(r0)
and the second on [r0,∞) with boundary conditions U ′(r0) = 0 = U ′(∞).

It will be shown below that ε = O(r0e
−2r0). Therefore we will need to expand in

both ε and 1
r0
. First, we treat r0 as constant with respect to ε and expand

U = U0 + εU1 + · · · .
We get

0 = U0rr +
2

r
U0r − U0 + U2

0

r

r0
,

0 = U1rr +
2

r
U1r − U1 + 2U0U1

r

r0
+ U2

0 .

Next we let

y = r − r0

and expand

U0(r) = U00(y) +
1

r0
U01(y) +

1

r20
U02(y) + · · · .
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We have

(U00)yy − U00 + U2
00 = 0; U ′

00 (0) = 0,

so that

U00(y) = w(y).

At the next order we get

(66) LU01 + 2wy + yw2 = 0,

where

Lφ := φyy − φ+ 2wφ.

Note that L(yw) = yw2 + 2wy so that the solution to (66) is given by

U01 = −yw + Cwy .

To determine the constant C we impose the condition U ′
01(0) = 0, which yields

C = −2,

U01 = −yw − 2wy.

Therefore U01 is odd and at the next order we get

(67) LU02 = f(y),

where f(y) is a purely even function. Again, we treat this as two equations, one to
the left and another to the right of r0. To the left of r0, multiply (67) by wy and
integrate y = −r0 . . . 0. We then get

(68) (wyU02y − wyyU02)|y=0−

y=−r0
∼
∫ 0

−∞
f(y)wydy = −

∫ ∞

0

f(y)wydy.

To the right of r0 we get

(69) (wyU02y − wyyU02)|y=∞
y=0+ ∼

∫ ∞

0

f(y)wydy.

Adding (68) and (69) together we get

(70) wyy (0)
[
U02(0

+)− U02(0
−)
]
= (wyU02y − wyyU02)|y=−r0

.

Therefore we need to determine the behavior near r = 0. Recalling that y = r − r0
we write

(71) w ∼ C0e
r, r ∼ 0; C0 = 6e−r0.

Since the solution decays near zero, we have u2 � u so that for small r

urr +
2

r
ur − u ∼ 0, u′(0) = 0.

Such a solution is given by

(72) u = A
er − e−r

r
,
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where the constant A is to be determined. To do so, we rewrite U00 +
1
r0
U01 as

U00 +
1

r0
U01 = w +

1

r0
(−2wy − yw)

∼ C0

r0
er (−2− r + 2r0) .

Evaluating at r = r0, we obtain

(73)

(
U00 +

1

r0
U01

)∣∣∣∣
r=r0

∼ C0

r0
er0 (−2 + r0) .

On the other hand, from (72) we estimate

(74) u(r0) ∼ A

r0
er0 .

Matching (73) and (74) we obtain

(75) A = C0 (r0 − 2) .

Therefore the uniform expansion of u is given by

(76) u ∼ w +
1

r
(−2wy − yw) − C0 (r0 − 2)

e−r

r
.

We now match decaying mode of (72) to the remainder of U0 in the outer region:

−A
e−r

r
∼ U02

r20
.

This gives the following behavior of U02 in the outer region:

U02 ∼ C0 (2− r0)
r20
r
e−r(77)

∼ C0 (2− r0) r0e
−r0e−y.(78)

Using this we evaluate

(79) (wyU02y − wyyU02)|y=−r0
∼ −2C2

0 (r0 − 2) r0.

Substituting (79), (71), and wyy(0) = − 3
4 into (70) we obtain

(80) U02(0
+)− U02(0

−) ∼ −96e−2r0 (r0 − 2) r0.

This yields

(81) U0(0
+)− U0(0

−) ∼ −96e−2r0

(
1− 2

r0

)
.

Next we compute the jump in U1. We expand

(82) U1 = U10(y) +
1

r0
U11(y) + · · · .
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The leading order is

LU10 + w2 = 0.

Imposing U ′
10(0) = 0 and recalling that Lw = w2, we get

U10(y) = −w.

The next order then becomes

LU11 = 2wy + 2yw2.

Multiplying by wy and integrating to the left of r0 we therefore get

(83) (wyU11y − wyyU11)
0−

y=−r0
∼
∫ 0

−∞

(
2wy + 2yw2

)
wydy = −6

5
,

and similarly to the right of r0,

(84) (wyU11y − wyyU11)
∞
0+ =

∫ ∞

0

(
2wy + 2yw2

)
wydy = −6

5
.

Adding (83), (84) together and ignoring the exponentially small boundary terms we
obtain

U11(0
+)− U11(0

−) ∼ 16

5

so that

(85) U1(r
+
0 )− U1(r

−
0 ) ∼

16

5r0
.

Putting together (81) and (85) we have

u(r+0 )− u
(
r−0
) ∼ (U0(r

+
0 )− U0(r

−
0 )
)
+ ε

(
U1(r

+
0 )− U1(r

−
0 )
)

∼ −96e−2r0

(
1− 2

r0

)
+

ε

r0

16

5
.

The solvability condition is that this quantity is zero, that is,

ε ∼ 30r0e
−2r0

(
1− 2

r0

)
.

This completes the proof.

Appendix B. Analysis of u′′ + N−1
r

u′ + αrqup + βup = 0.
Lemma 10. Let u satisfy

u′′ +
N − 1

r
u′ + g(r)u = 0, u > 0 on [R,∞)

for some R ≥ 0. Then for any δ > 0, there exists rk → ∞ such that

g(rk) <

(
(N − 2)2

4
+ δ

)
r−2
k .
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Proof. Assume there is R1 > R such that g(r) ≥ ( (N−2)2

4 + δ)r−2 for r ≥ R1.
The equation

v′′ +
N − 1

r
v′ +

(
(N − 2)2

4
+ δ

)
r−2v = 0

has a solution v = r−
n−2
2 cos(

√
δ log r). By the oscillation theory, u oscillates faster

than v and therefore has infinitely many roots on [R1,∞), which is a contradiction.
The proof is finished.

Lemma 11. Assume q > qc > q� and p > 1, where qc and q� are given in (7a)
and (9). Let u satisfy

u′′ +
N − 1

r
u′ − u+ (β + αrq)up = 0, u > 0 on [R,∞)

for some R ≥ 0, where α ≥ 0, β ≥ 0, and α �= 0. Then there exist δ > 0 and rk → ∞
such that u(rk) < r

−N−2
2 −δ

k and 0 > u′(rk) ≥ −(N−2
2 + δ)r

−N−2
2 −δ−1

k .

Proof. First we show that lim infr→∞(β + αrq)up−1 ≤ 1. If it is false, then there
are ε > 0 and R1 > R such that (β + αrq)up−1 > 1 + ε and u oscillates fast than the
solution of v′′ + N−1

r v′ + εv = 0 on [R1,∞). This is impossible since v has infinitely
many roots. Therefore lim infr→∞(β + αrq)up−1 ≤ 1 and there are infinitely many
r̂k → ∞ such that (β + αr̂qk)u

p−1(r̂k) < 2. That is,

u(r̂k) = O((β + αr̂qk)
− 1

p−1 ) ≤ c r̂
−N−2

2 −δ

k

for some δ > 0 and c > 0 since q > qc.

If there is R1 > 0 such that u(r) ≤ c r−
N−2

2 −δ for r > R1, then we can find

rk → ∞ such that 0 > u′(rk) ≥ −c (N−2
2 + δ)r

−N−2
2 −δ−1

k . In this case, we also

trivially have u(rk) ≤ c r
−N−2

2 −δ

k . We can remove c by letting r1 be big and taking a
different δ.

Now assume there are infinitely many bk → ∞ such that u(bk) = c b
−N−2

2 −δ

k

and u(r) ≤ c r−
N−2

2 −δ for b2k < r < b2k+1. Since u′(b2k) ≤ −(N−2
2 + δ)b

−N−2
2 −δ−1

2k

and u′(b2k+1) ≥ −(N−2
2 + δ)b

−N−2
2 −δ−1

2k+1 , there is rk ∈ [b2k, b2k+1] such that u′(rk) =

−(N−2
2 + δ)r

−N−2
2 −δ−1

k and u(rk) ≤ c r
−N−2

2 −δ

k . Again we can remove c by taking a
different δ. The proof is finished.

Lemma 12. Assume q > q� and p� > p > 1, where q� is given in (7a). Let u
satisfy

u′′ +
N − 1

r
u′ + (β + αrq)up = 0, u > 0 on [R,∞)

for some R ≥ 0, where α ≥ 0, β ≥ 0 and α2 + β2 �= 0. Then there exist δ > 0 and

rk → ∞ such that u(rk) < r
−N−2

2 −δ

k and 0 > u′(rk) ≥ −(N−2
2 + δ)r

−N−2
2 −δ−1

k .
Proof. By Lemma 10, there exist rk → ∞ such that

(αrq + β)up−1(rk) ≤
(
(N − 2)2

4
+ δ

)
r−2
k .

Therefore

u(rk) = O((βr2k + αrq+2
k )−

1
p−1 ) ≤ cr

−N−2
2 −δ

k ,



SPOT REPLICATION 3589

where q > q� and p� > p > 1 are used. Now the remainder of the proof can follow the
argument in the proof of Lemma 11.

Now consider the problem

(86) u′′ +
N − 1

r
u′ + αrqup + βup = 0; u(0) = 1, u′(0) = 0,

where α ≥ 0, β ≥ 0, and α2 + β2 �= 0. The main result that we need is the following.
Lemma 13. Suppose that p� > p > 1 and q > q�. Then the solution to (86)

crosses the horizontal axis.
Proof. Assume that u(r) > 0 for r ≥ 0. As in (16) and (17), we multiply (86) by

rN−1u and rNu′ and integrate by parts to obtain

(87) −
∫ ∞

0

rN−1u′2dr +
∫ ∞

0

rN−1 (β + αrq)up+1dr = 0

and

(88)

(
−1 +

N

2

)∫ ∞

0

rN−1u′2dr − N + q

p+ 1

∫ ∞

0

αrN−1+qup+1dr

− β
N

p+ 1

∫ ∞

0

rN−1up+1dr = 0,

where the boundary terms vanish by Lemma 12. Combining (87) and (88) to eliminate
the term u′2, we obtain

∫ ∞

0

βrN−1up+1

[
(N − 2)p− (N + 2)

2(p+ 1)

]
dr

+

∫ ∞

0

αrN−1+qup+1

[
(N − 2)p− (N + 2)− 2q

2(p+ 1)

]
dr = 0.

This is impossible since p� > p > 1 and q > q�. We have completed the proof.

Appendix C. The solution branch connecting to the positive solution
for a = 0. The goal of this appendix is to rigorously prove Lemma 1. In fact we will
consider a slightly more general problem. For convenience, we let h(r; a) = 1 + arq

and we consider the problem

(89) urr +
N − 1

r
ur − u+ h(r; a)|u|p = 0, u > 0, ur(0) = 0, lim

r→∞u(r) = 0.

When a = 0, by [17], the equation has a unique solution U(r). In this section, we
restrict ourselves to radially symmetric functions and are concerned with the local
existence of the solution branch of (89) for a > 0 which connects to U(r). Let
s0 = U(0). The proof of Lemma 1 relies on Lemmas 14 and 15, which we now prove.

Lemma 14. Let u be a solution of (89). Assume h(r; a)[u(r)]p−1 ≤ 1 − τ for
r ≥ R, where R > 0 and 1 > τ > 0. Then

u(r) ≤
(

1− τ

h(R; a)

) 1
p−1

eα(R−r) for r ≥ R,

where α =
√
τ . Moreover, for any α1 < 1, there is c > 0 such that u(r) ≤ ce−α1r on

[0,∞).
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Proof. Let

w1 =

(
1− τ

h(R; a)

) 1
p−1

eα(R−r) and w = u− w1.

Then on [R,∞), w1 satisfies

Δw1 − w1 + hup−1w1 ≤ (w1)rr − τw1 = 0

and w satisfies

Δw − w + hup−1w ≥ 0.

Note that w(R) ≤ 0 and limr→∞ w(r) = 0. By the maximum principle, w ≤ 0 on
[R,∞).

Since u decays exponentially, hup−1 → 0 as r → ∞. We can apply the argument
above to conclude that for any α1 < 1, there is c > 0 such that u(r) ≤ ce−α1r on
[0,∞).

Lemma 15. Let ā ≥ 0 and ū be a solution of (89) with a = ā. Assume ū has
exponential decay and the solution Z of the linearized equation

(90) Lū,āZ := Zrr +
N − 1

r
Zr + (ph(r; ā)ūp−1 − 1)Z = 0, Z(0) = 1, Zr(0) = 0,

satisfies limr→∞ |Z(r)| = ∞. Then there exists δ > 0 such that (89) has a positive
exponential decay solution u(r; a) for |a − ā| < δ. Moreover, u(r; a) is C1 in the
variable a.

Proof. Let u(r; a) = ū(r; ā) + v(r; a). Then u(r; a) satisfies (89) iff v is a solution
of

Lū,āv = g(r, v(r), a)(91)

=: −h(r; ā)[(ū + v)p − ūp − pūp−1v] + [h(r; ā)− h(r; a)](ū + v)p,

vr(0) = 0.

Let Z be the solution of (90) and let Z1 satisfy Lū,āZ1 = 0 such that the Wronskian
W (Z1, Z) of Z1 and Z satisfies W (Z1, Z) = r−N+1. Then as r → 0, we have |Z1(r)| =
O(r−N+2) for N ≥ 3; |Z1(r)| = O(− log r) for N = 2; |Z1(r)| = O(1) for N = 1. Since
ū decays exponentially, Lū,ā ∼ Δ− 1 for large r. By ODE theory, Z(r) = O(e(1+ε1)r)
and Z1(r) = O(e−(1−ε1)r) for any small ε1 > 0. Also, ODE theory implies ū(r) =
O(e−(1−ε1)r). The method of variation of parameters yields the formula for v in terms
of g,
(92)

v(r) = −Z1(r)

∫ r

0

Z(η)g(η, v(η), a)

W (Z1, Z)(η)
dη + Z(r)

∫ r

0

Z1(η)g(η, v(η), a)

W (Z1, Z)(η)
dη + βZ + γZ1.

To seek an exponential decay solution, we have to eliminate the term Z as r → ∞.
Therefore we take

(93) β = −
∫ ∞

0

ηN−1Z1(η)g(η, V (η), a) dη.

To let v(0) remain bounded and vr(0) = 0, we take γ = 0. That is, v should satisfy

(94) v(r) = H(v, a) =: −Z1(r)

∫ r

0

ηN−1Z(η)g dη − Z(r)

∫ ∞

r

ηN−1Z1(η)g dη.
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To prove that (94) has a solution, let 0 < α < 1 and consider the weighted norm

(95) |v|α = sup
r≥0

|v(r)eαr |

and the space

(96) L∞
α = {v is continuous on [0,∞) : |v|α < ∞}.

Let α = 1− ε1 and ε1 > 0 be small enough such that pα > 1 + 2ε1. To solve (94), we
show that H(v, a) is a contraction mapping on a ball in L∞

α . Let v1, v2 ∈ L∞
α with

|v1|α, |v2|α ≤ δ, where δ is to be chosen later. Using the facts Z(r) = O(e(1+ε1)r),
Z1(r) = O(e−(1−ε1)r), ū(r) = O(e−(1−ε1)r) as r → ∞, and |v1(r)|, |v2(r)| ≤ δe−αr, we
have the following estimates:

|g(r, v1(r), a)− g(r, v2(r), a)|(97)

≤ c h(r; ā)(ū(r) + |v1(r)| + |v2(r)|)p−2(|v1(r)| + |v2(r)|)|v1(r) − v2(r)|
+ c rq|a− ā|(ū(r) + |v1(r)| + |v2(r)|)p−1|v1(r) − v2(r)|

≤ ĉ h(r; ā)e−pαrδmin{p−1,1}|v1 − v2|α + ĉ rqe−pαr|a− ā||v1 − v2|α
with some constants c and ĉ, which can be verified by considering the case ū(r) >
2(|v1(r)| + |v2(r)|) and the case ū(r) ≤ 2(|v1(r)| + |v2(r)|) separately.

Denote the first term and second term in H(v, a) by F1(v, a) and F2(v, a), respec-
tively. From the above estimate and the fact that pα > 1 + 2ε1, we have

|F1(v1, a)− F1(v2, a)|(98)

≤ c1|Z1(r)|δmin{p−1,1}|v1 − v2|α
∫ r

0

ηN−1(1 + ηq)|Z(η)|e−pαη dη

+ c2|a− ā||Z1(r)||v1 − v2|α
∫ r

0

ηN−1+q|Z(η)|e−pαη dη

≤ c3e
−αr(δmin{p−1,1} + |a− ā|)|v1 − v2|αrN−1(1 + rq)e(−pα+1+ε1)r

≤ c4r
N−1(1 + rq)e−(α+ε1)r(δmin{p−1,1} + |a− ā|)|v1 − v2|α

and

|F2(v1, a)− F2(v2, a)|(99)

≤ c5|Z(r)|δmin{p−1,1}|v1 − v2|α
∫ ∞

r

ηN−1(1 + ηq)|Z1(η)|e−pαη dη

+ c6|a− ā||Z(r)||v1 − v2|α
∫ ∞

r

ηN−1+q|Z1(η)|e−pαη dη

≤ c7e
(1+ε1)r(δmin{p−1,1} + |a− ā|)|v1 − v2|α(1 + rN−1+q)e−(p+1)αr

≤ c8(1 + rN−1+q)e−(α+ε1)r(δmin{p−1,1} + |a− ā|)|v1 − v2|α.
Therefore

|H(v1, a)−H(v2, a)|α ≤ |F1(v1, a)− F1(v2, a)|α + |F2(v1, a)− F2(v2, a)|α(100)

≤ c9(δ
min{p−1,1} + |a− ā|)|v1 − v2|α

≤ 1

2
|v1 − v2|α
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if δ is small, |a− ā| < δ, and |v1|α, |v2|α ≤ δ. For v = 0, we have

|H(0, a)| ≤ |a− ā||Z1(r)|
∫ r

0

ηN−1+q|Z(η)|ūp dη(101)

+ |a− ā||Z(r)|
∫ ∞

r

ηN−1+q|Z1(η)|ūp dη

≤ c10|a− ā|(1 + rN−1+q)e−(α+ε1)r.

This implies

(102) |H(0, a)|α ≤ c11|a− ā| < 1

4
δ

if we further assume |a− ā| ≤ δ0 =
δ

4c11 + 1
. For |v|α ≤ δ, we have

|H(v, a)|α ≤ |H(v, a)−H(0, a)|α + |H(0, a)|α(103)

<
1

2
|v − 0|α +

1

4
δ ≤ 3

4
δ.

The above estimates show that H(v, a) is a contraction mapping defined on the ball
{v ∈ L∞

α : |v|α ≤ δ}. The fixed point theorem then implies (94) has a solution v(r; a)
and (89) has an exponential decay solution u(r : a) = ū(r; ā) + v(r; a) for |a− ā| < δ0
and a ≥ 0.

The positivity of u(r; a) is shown in Lemma 4. The C1 property of u(r; a) in
a follows from a standard argument in the implicit function theory for a Banach
space.

Proof of Lemma 1. For a given (a, s), let v(r; a, s) denote the solution to

(104) vrr +
N − 1

r
vr − v + |v|p h(r) = 0, v′(0) = 0, v(0) = s, r > 0.

Let U(r) be the unique solution of (89) for a = 0 and let s0 = U(0). It is known that
for a = 0, the solution Z(r) of the corresponding linearized equation with Z(0) = 1
and Zr(0) = 0 satisfies the property limr→∞ Z(r) = −∞. Therefore by applying
Lemma 15 to the case ū = U and ā = 0, Lemma 1 is proved.
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