1d_eulerian_shock

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Fluids >

1d_eulerian_shock

Previous pageReturn to chapter overviewNext page

{  1D_EULERIAN_SHOCK.PDE

 

  Comparison with shock tube problem of G.A. Sod

 

  See 1D_LAGRANGIAN_SHOCK.PDE for a Lagrangian model of the same problem.

 

  Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of

  Nonlinear Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978)

 

  See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the

  Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995.

}

TITLE "Sod's Shock Tube Problem - Eulerian"

COORDINATES  

 cartesian1

SELECT

 ngrid=200     { increase the grid density }

 regrid=off   { disable the adaptive mesh refinement }

 errlim=1e-4   { lower the error limit }

VARIABLES

 rho(1)

 u(1)

 P(1)

DEFINITIONS

 len = 1

 gamma = 1.4

 smeardist = 0.001 { a damping term to kill unwanted oscillations }

 eps = sqrt(gamma)*smeardist   { ~ cspeed*dist }

INITIAL VALUES

 rho = 1.0 - 0.875*uramp(x-0.49, x-0.51)

 u = 0

 P = 1.0 - 0.9*uramp(x-0.49, x-0.51)

EQUATIONS

 rho:  dt(rho) + u*dx(rho) + rho*dx(u)  = eps*dxx(rho)

 u:    dt(u) + u*dx(u) + dx(P)/rho  = eps*dxx(u)

 P:    dt(P) + u*dx(P) + gamma*P*dx(u)  = eps*dxx(P)

BOUNDARIES

REGION 1

  START(0) point value(u)=0

  Line to (len) point value(u)=0

TIME 0 TO 0.375

MONITORS

for cycle=5

  elevation(rho) from(0) to (len)

  elevation(u)   from(0) to (len)

  elevation(P)   from(0) to (len)

  history(rho) at (0.5)

  history(u)   at (0.48) (0.49) (0.5) (0.51) (0.52)

  history(p)   at (0.48) (0.49) (0.5) (0.51) (0.52)

  history(deltat)

  grid(x)

PLOTS

for t=0.143, 0.375

  elevation(rho) from(0) to (len)

  elevation(u)   from(0) to (len)

  elevation(P)   from(0) to (len)

  history(rho) at (0.48) (0.49) (0.5) (0.51) (0.52)

  history(u)   at (0.48) (0.49) (0.5) (0.51) (0.52)

  history(p)   at (0.48) (0.49) (0.5) (0.51) (0.52)

END