1d_lagrangian_shock

<< Click to Display Table of Contents >>

Navigation:  Sample Problems > Applications > Fluids >

1d_lagrangian_shock

Previous pageReturn to chapter overviewNext page

{  1D_LAGRANGIAN_SHOCK.PDE

 

  This example solves Sod's shock tube problem on a 1D moving mesh.

  Mesh nodes are given the local fluid velocity, so the model is fully Lagrangian.

 

  See 1D_EULERIAN_SHOCK.PDE for an Eulerian model of the same problem.

 

  Ref: G.A. Sod, "A Survey of Several Finite Difference Methods for Systems of

  Nonlinear Hyperbolic Conservation Laws", J. Comp. Phys. 27, 1-31 (1978)

 

  See also Kershaw, Prasad and Shaw, "3D Unstructured ALE Hydrodynamics with the

  Upwind Discontinuous Finite Element Method", UCRL-JC-122104, Sept 1995.

}

TITLE "Sod's Shock Tube Problem - Lagrangian"

COORDINATES

 cartesian1

SELECT

 ngrid = 100   { increase the grid density }

 regrid = off { disable the adaptive mesh refinement }

 errlim = 1e-4 { lower the error limit }

VARIABLES

 rho(1)

 u(1)

 P(1)

 xm=move(x)

DEFINITIONS

 len = 1

 gamma = 1.4

 smeardist = 0.001 { a damping term to kill unwanted oscillations }

 eps = sqrt(gamma)*smeardist { ~ cspeed*dist }

 v = 0

 rho0 = 1.0 - 0.875*uramp(x-0.49, x-0.51)

 p0   = 1.0 - 0.9*uramp(x-0.49, x-0.51)

INITIAL VALUES

 rho = rho0

 u = 0

 P = p0

EULERIAN EQUATIONS

{ equations are stated as appropriate to the Eulerian (lab) frame.

   FlexPDE will convert to Lagrangian form for moving mesh }

 rho:  dt(rho) + u*dx(rho) + rho*dx(u)  = eps*dxx(rho)

 u:    dt(u) + u*dx(u) + dx(P)/rho  = eps*dxx(u)

 P:    dt(P) + u*dx(P) + gamma*P*dx(u)  = eps*dxx(P)

 xm:   dt(xm) = u

BOUNDARIES

REGION 1

  START(0)       point value(u)=0   point value(xm)=0

  line to (len)   point value(u)=0   point value(xm)=len

TIME 0 TO 0.375

MONITORS

for cycle=5

  elevation(rho) from(0) to (len) range (0,1)

  elevation(u)   from(0) to (len) range (0,1)

  elevation(P)   from(0) to (len) range (0,1)

PLOTS

for t=0 by 0.02 to 0.143, 0.16 by 0.02 to 0.375

  elevation(rho) from(0) to (len) range (0,1)

  elevation(u)   from(0) to (len) range (0,1)

  elevation(P)   from(0) to (len) range (0,1)

  grid(x)

END